Extracellular domain shedding influences specific tumor uptake and organ distribution of the EGFR PET tracer 89Zr-imgatuzumab
نویسندگان
چکیده
Preclinical positron emission tomography (PET) imaging revealed a mismatch between in vivo epidermal growth factor receptor (EGFR) expression and EGFR antibody tracer tumor uptake. Shed EGFR ectodomain (sEGFR), which is present in cancer patient sera, can potentially bind tracer and therefore influence tracer kinetics. To optimize EGFR-PET, we examined the influence of sEGFR levels on tracer kinetics and tumor uptake of EGFR monoclonal antibody 89Zr-imgatuzumab in varying xenograft models. Human cancer cell lines A431 (EGFR overexpressing, epidermoid), A549 and H441 (both EGFR medium expressing, non-small cell lung cancer) were xenografted in mice. Xenografted mice received 10, 25 or 160 μg 89Zr-imgatuzumab, co-injected with equal doses 111In-IgG control. MicroPET scans were made 24, 72 and 144 h post injection, followed by biodistribution analysis. sEGFR levels in liver and plasma samples were determined by ELISA. 89Zr-imgatuzumab uptake in A431 tumors was highest (29.8 ± 5.4 %ID/g) in the 160 μg dose group. Contrary, highest uptake in A549 and H441 tumors was found at the lowest (10 μg) 89Zr-imgatuzumab dose. High 89Zr-imgatuzumab liver accumulation was found in A431 xenografted mice, which decreased with antibody dose increments. 89Zr-imgatuzumab liver uptake in A549 and H441 xenografted mice was low at all doses. sEGFR levels in liver and plasma of A431 bearing mice were up to 1000-fold higher than levels found in A549, H441 and non-tumor xenografted mice. 89Zr-imgatuzumab effectively visualizes EGFR-expressing tumors. High sEGFR levels can redirect 89Zr-imgatuzumab to the liver, in which case tumor visualization can be improved by increasing tracer antibody dose.
منابع مشابه
Imaging the distribution of an antibody-drug conjugate constituent targeting mesothelin with 89Zr and IRDye 800CW in mice bearing human pancreatic tumor xenografts
Mesothelin is a tumor differentiation antigen expressed by epithelial tumors, including pancreatic cancer. Currently, mesothelin is being targeted with an antibody-drug conjugate (ADC) consisting of a mesothelin-specific antibody coupled to a highly potent chemotherapeutic drug. Considering the toxicity of the ADC and reduced accessibility of pancreatic tumors, non-invasive imaging could provid...
متن کاملQuantitative assessment of Zirconium-89 labeled cetuximab using PET/CT imaging in patients with advanced head and neck cancer: a theragnostic approach
Biomarkers predicting treatment response to the monoclonal antibody cetuximab in locally advanced head and neck squamous cell carcinomas (LAHNSCC) are lacking. We hypothesize that tumor accessibility is an important factor in treatment success of the EGFR targeting drug. We quantified uptake of cetuximab labeled with Zirconium-89 (89Zr) using PET/CT imaging.Seventeen patients with stage III-IV ...
متن کاملIn vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft.
UNLABELLED Vascular endothelial growth factor (VEGF), released by tumor cells, is an important growth factor in tumor angiogenesis. The humanized monoclonal antibody bevacizumab blocks VEGF-induced tumor angiogenesis by binding, thereby neutralizing VEGF. Our aim was to develop radiolabeled bevacizumab for noninvasive in vivo VEGF visualization and quantification with the single gamma-emitting ...
متن کامل89Zr-mAb3481 PET for HER3 tumor status assessment during lapatinib treatment
Treatment of human epidermal growth factor receptor 2 (HER2)-driven breast cancer with tyrosine kinase inhibitor lapatinib can induce a compensatory HER3 increase, which may attenuate antitumor efficacy. Therefore, we explored in vivo HER3 tumor status assessment after lapatinib treatment with zirconium-89 (89Zr)-labeled anti-HER3 antibody mAb3481 positron emission tomography (PET). Lapatinib e...
متن کاملEvaluation of D-isomer of 18F-FBPA for oncology PET focusing on the differentiation of glioma and inflammation
Objective(s): L-4-borono-2-18F-fluoro-phenylalanine (L-[18F]FBPA), a substrate of L-type amino acid transporter 1 (LAT1), is a tumor-specific probe used in positron emission tomography (PET). On the other hand, it has not been examined whether another isomer D-[18F]FBPA accumulates specifically in the tumor. He...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016